//-->
SORUNUZU SORUN HEP BİRLİKTE CEVAPLAYALIM BÖLÜMÜ SOLDA FORUM YAZAN YERDEDİR. FORUMA ÜYE OLUN TÜM SORULARINIZ CEVAPLANSIN. MATEMATİK VE DİĞER DERSLERİN VİDEOLU KONU ANLATIMI VE SORU ÇÖZÜMÜ VİDEO ANLATIMLARI SİTEMİZDE BULUNMAKTADIR MATEMATİKCİMM SONUNDAKİ CİMM 2 M İLE YAZILIYOR :) *HOŞ GELDİNİZ*
aaaa
aaaaaa
6. 7. 8. Sınıf Matematik
6. 7. 8. Sınıf Videolu konu anlatımı
6. 7. 8. Sınıf Videolu soru çözümü
6. 7. 8. Sınıf Türkçe
6. 7. 8. Sınıf Fen bilgisi
6. 7. 8. Sınıf Sosyal bilgiler
aaaaaa
Matematik
Geometri
Fizik
Kimya
Biyoloji
Edebiyat
Dil ve anlatım
6. 7. 8. Sınıf Matematik
Matematik
Geometri
Fizik
Kimya
Biyoloji
Türkçe
Edebiyat
Tarih
6. 7. 8. Sınıf Matematik
Geometri
Matematik
Toplist
Site içi arama
Ziyaretçi defteri
Site duyuruları
Yönetici Hakkında
Hakkımızda
iletişim
Reklam ver
Site Haritası
aaaaaaaa
Takvim yaprakları
Döküman arşivi

Eğitim Haberleri
Anketler
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce
Filipinli Bakıcı
Filipinli Bakıcılar
Filipinli Bakıcı Arıyorum
5 günde ingilizce
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce

Tüm dersler ve Matematik

Bölme - Bölünebilme

 

A. BÖLME

A, B, C, K birer doğal sayı ve B ¹ 0 olmak üzere,

bölme işleminde,

  • A ya bölünen, B ye bölen, C ye bölüm, K ya kalan denir.
  • A = B . C + K dır.
  • Kalan, bölenden küçüktür. (K < B)
  • Kalan, bölümden (C den) küçük ise, bölen (B) ile bölümün (C) yeri değiştirilebilir.
  • K = 0 ise, A sayısı B ile tam bölünebiliyor denir.

B. BÖLÜNEBİLME KURALLARI

1. 2 İle Bölünebilme

Birler basamağındaki rakamı çift olan sayılar 2 ile tam bölünür.

Tek sayıların 2 ile bölümünden kalan 1 dir.

2. 3 İle Bölünebilme

Rakamlarının sayısal değerleri toplamı 3 ün katı olan sayılar 3 ile tam bölünür.

Bir sayının 3 ile bölümünden kalan, rakamlarının toplamının 3 ile bölümünden kalana eşittir.

3. 4 İle Bölünebilme

Bir sayının onlar basamağındaki rakam ile birler basamağındaki rakamın (son iki basamak) belirttiği sayı, 4 ün katı olan sayılar 4 ile tam bölünür.

... abc sayısının 4 ile bölümünden kalan bc nin (son iki basamak) 4 ile bölümünden kalana eşittir.

l... abc sayısının 4 ile bölümünden kalan

c + 2 . b nin 4 ile bölümünden kalana eşittir.

4. 5 İle Bölünebilme

Birler basamağındaki rakam 0 veya 5 olan sayılar 5 ile tam bölünür.

Bir sayının 5 ile bölümünden kalan, o sayının birler basamağındaki rakamın 5 ile bölümünden kalana eşittir.

5. 7 İle Bölünebilme

(n + 1) basamaklı anan-1 ... a4a3a2a1a0 sayısının 7 ile tam bölünebilmesi için,

k Î Z olmak üzere,

(a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + ... = 7k 

olmalıdır.

Ü Birler basamağı a0, onlar basamağı a1, yüzler basamağı a2, ... olan sayının 7 ile bölümünden kalan (a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + ... işleminin sonucunun 7 ile bölümünden kalana eşittir.

6. 8 İle Bölünebilme

Yüzler basamağındaki, onlar basamağındaki ve birler basamağındaki rakamların (son üç rakamın) belirttiği sayı 8 in katı olan sayılar 8 ile tam bölünür.

3000, 3432, 65104 sayıları 8 ile tam bölünür.

Ü Birler basamağı c, onlar basamağı b, yüzler basamağı a, ... olan sayının 8 ile bölümünden kalan c + 2 . b + 4 . a toplamının 8 ile bölü-münden kalana eşittir.

7. 9 İle Bölünebilme

Rakamlarının toplamı 9 un katı olan sayılar 9 ile tam bölünür.

Bir sayının 9 ile bölümünden kalan, o sayının rakamlarının toplamının 9 ile bölümünden kalana eşittir.

8. 10 İle Bölünebilme

Birler basamağındaki rakamı 0 (sıfır) olan sayılar 10 ile tam bölünebilir. Bir sayının birler basamağındaki rakam o sayının 10 ile bölümünden kalandır.

9. 11 İle Bölünebilme

(n + 1) basamaklı anan–1 ... a4a3a2a1a0 sayısının 11 ile tam bölünebilmesi için

(a0 + a2 + a4 + ...) – (a1 + a3 + a5 + ...)... = 11 . k 

ve k Î Z olmalıdır.

® (n + 1) basamaklı anan–1 ... a4a3a2a1a0 sayı-sının 11 ile bölümünden kalan

(a0 + a2 + a4 + ...) – (a1 + a3 + a5 + ...)... işleminin sonucunun 11 ile bölümünden kalana eşittir.

Aralarında asal iki sayıya bölünebilen bir sayı, bu iki sayının çarpımına da tam bölünür.

  •  2 ve 3 ile tam bölünen sayılar 6 ile de bölünür.
  •  3 ve 4 ile tam bölünen sayılar 12 ile de bölünür.

C. BÖLEN KALAN İLİŞKİSİ

A, B, C, D, E, K1, K2 uygun koşullarda birer doğal sayı olmak üzere,

A nın C ile bölümünden kalan K1 ve

B nin C ile bölümünden kalan K2 olsun.

Buna göre,

  •  A . B nin C ile bölümünden kalan K1 . K2 dir.
  •  A ± B nin C ile bölümünden kalan K1 ± K2 dir.
  •  D . A nın C ile bölümünden kalan D . K1 dir.
  •  AE nin C ile bölümünden kalan K1E dir.

Burada kalan değerler bölenden (C den) büyük ise, tekrar C ile bölünerek kalan bulunur.

D. ÇARPANLAR İLE BÖLÜM

Bir A doğal sayısı B . C ile tam bölünüyorsa A sayısı B ve C doğal sayılarıyla da bölünebilir. Fakat bu ifadenin karşıtı (A sayısı B ile ve C ile tam bölünüyorsa A sayısı B . C ile tam bölünür.) her zaman doğru değildir.

  • 144 sayısı 2 . 6 = 12 ile tam bölünür ve 144 sayısı 2 ile ve 6 ile de tam bölünür.
  • 6 sayısı 2 ile ve 6 ile tam bölünür. Fakat 6 sayısı 2 . 6 = 12 ile tam bölünemez.

E. BİR TAM SAYININ TAM BÖLENLERİ

Bir tam sayının, asal sayıların çarpımı biçiminde yazıl-masına bu sayının asal çarpanlarına ayrılması denir.

a, b, c birbirinden farklı asal sayılar ve m, n, k pozitif tam sayılar olmak üzere,

A = am . bn . ck olsun.

  • A yı tam bölen asal sayılar a, b, c dir.
  • A sayısının pozitif tam bölenlerinin sayısı: (m + 1) . (n + 1) . (k + 1) dir.
  • A sayısının pozitif tam bölenlerinin ters işaret-lileri de negatif tam bölenidir.
  • A sayısının tam sayı bölenleri sayısı:

2 . (m + 1) . (n + 1) . (k + 1) dir.

  • A sayısının tam sayı bölenleri toplamı 0 (sıfır) dır.
  • A sayısının pozitif tam bölenlerinin toplamı :

          

  • A sayısının asal olmayan tam sayı bölenlerinin sayısı, A nın tam sayı bölenlerinin sayısından A nın asal bölenlerinin sayısı çıkarılarak bulunur.
  • A nın asal olmayan tam sayı bölenleri toplamı – (a + b + c) dir.
  •  A sayısından küçük A ile aralarında asal olan sayıların sayısı:

          

  •  A sayısını pozitif tam sayı bölenlerinin çarpımı:

         

 
matematikcimm.tr.gg
Atasözleri sözlüğü
Deyimler sözlüğü
Kompozisyon Örnekleri
Kitap özetleri
Bilgi damlaları
Roman özetleri
100 Temel eser
Türk destanları
Dünyamızı tanıyalım
Ülkemizi tanıyalım
Türkiyenin bölgeleri
Dünya bilimi
Bilim adamları
Biliyormusun ?
Rekorlar kitabı
Bilmeceler
Güzel sözler
Fıkralar
Komik yazılar
Diğer Konular
Hoşgeldin 2011
İslami bilgiler
Photoshop dersleri
Küresel ısınma
Çeşitli bilgiler
Online:
Tekil Hit: 180
Çoğul Hit: 207
Ip: 3.145.12.194

PageRank
© Matematikcimm.tr.gg Tüm hakları saklıdır.İçerik kaynak gösterilmesi halinde kullanılabilir 2008-2009-2010 Copyright ©
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol