//-->
SORUNUZU SORUN HEP BİRLİKTE CEVAPLAYALIM BÖLÜMÜ SOLDA FORUM YAZAN YERDEDİR. FORUMA ÜYE OLUN TÜM SORULARINIZ CEVAPLANSIN. MATEMATİK VE DİĞER DERSLERİN VİDEOLU KONU ANLATIMI VE SORU ÇÖZÜMÜ VİDEO ANLATIMLARI SİTEMİZDE BULUNMAKTADIR MATEMATİKCİMM SONUNDAKİ CİMM 2 M İLE YAZILIYOR :) *HOŞ GELDİNİZ*
aaaa
aaaaaa
6. 7. 8. Sınıf Matematik
6. 7. 8. Sınıf Videolu konu anlatımı
6. 7. 8. Sınıf Videolu soru çözümü
6. 7. 8. Sınıf Türkçe
6. 7. 8. Sınıf Fen bilgisi
6. 7. 8. Sınıf Sosyal bilgiler
aaaaaa
Matematik
Geometri
Fizik
Kimya
Biyoloji
Edebiyat
Dil ve anlatım
6. 7. 8. Sınıf Matematik
Matematik
Geometri
Fizik
Kimya
Biyoloji
Türkçe
Edebiyat
Tarih
6. 7. 8. Sınıf Matematik
Geometri
Matematik
Toplist
Site içi arama
Ziyaretçi defteri
Site duyuruları
Yönetici Hakkında
Hakkımızda
iletişim
Reklam ver
Site Haritası
aaaaaaaa
Takvim yaprakları
Döküman arşivi

Eğitim Haberleri
Anketler
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce
Filipinli Bakıcı
Filipinli Bakıcılar
Filipinli Bakıcı Arıyorum
5 günde ingilizce
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce

Tüm dersler ve Matematik

dik prizmalar

 

DİK PRİZMALAR NEDİR?DİK PRİZMA ÇEŞİTLERİ NELERDİR?

  • DİK PRİZMALARIN ALAN ve HACİMLERİ

Alt ve üst tabanları paralel eş şekillerden oluşan cisimlere prizma denir. Yan yüzeyleri taban düzlemine dik olan prizmalara dik prizma adı verilir.

Prizmalarda yan yüzeyleri birleştiren ayrıtlara yanal ayrıt denir. [AA’], [BB’], [CC’], [DD’] yanal ayrıtlardır. Dik prizmalarda yanal ayrıt cismin yüksekliğine eşittir. Cismin yüksekliğine h dersek h = |AA’| = |BB’| = |CC’| = |DD’| olur. Prizmanın Hacmi

Hacim=Taban Alanı x Yükseklik

Dik prizmanın taban biçimi nasıl olursa olsun, yanal yüzeyi daima bir dikdörtgen olur. Yanal yüzü oluşturan dikdörtgenin alt kenarı tabanın çevresi kadardır. Diğer kenarı ise h yüksekliği kadar olur. Yanal Alan = Taban çevresi x YükseklikBütün dik prizmaların yanal alanı taban çevresi ile yüksekliğin çarpımıdır. Bütün Alan ise yanal alan ile iki taban alanının toplamıdır. Tüm Alan = Yanal Alan + 2. Taban Alanı

 

1. Dikdörtgenler Prizması 

Dikdörtgenler prizması yan yüzeyleri karşılıklı ikişer ikişer eş olan altı adet dikdörtgenden oluşan prizmadır. Burada hacim, taban alanı olan (a.b) ile yükseklik olan (c) nin çarpımıdır. Alan ise (a.b), (b.c) ve (a.c) yüzey alanlarının ikişer katlarının toplamıdır. Dikdörtgenler prizmasında birbirine en uzak iki köşeyi birleştiren doğru parçasına cisim köşegeni denir. Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir. Burada köşegenlerin uzunlukları
|AC’| = |A’C| = |BD’| = |B’D| = e (cisim köşegeni) |BD| = f (Yüzey köşegeni) olsun. Bu durumda Hacim = a.b.c Alan =2(ab+bc+ac) Alan = 2 (ab + bc + ac) Cisim Köşegeni: e =Öa2 + b2 + c2 Yüzey Köşegeni: f = Öa2 + b2

 2. Kare Prizma 

Tabanı kare olan prizmalara kare prizma denir. Yan yüzü dört adet eş dikdörtgenden oluşur.

Hacim = a2 . hYanal Alan = 4 . a . h Alan = 4.ah + 2.a2Cisim köşegeni : e = Öa2 + a2 + h2

3. Küp 

Bütün ayrıtları birbirine eşit olan dik prizmaya küp denir. Tüm yüzeyleri kare dir.
Hacim = a3 Alan = 6a2 Kübün yüzey köşegenleri birbirine eşittir. Yüzey köşegeni: f = aÖ2 Cisim köşegeni: e = aÖ3

 4. Üçgen Prizma

 Prizmalar tabanlarının şekline göre isim aldıklarından tabanı üçgen olan prizmalara üçgen prizma denir. Üçgen prizmalar tabanını oluşturan üçgene göre isimlenir. a. Eşkenar Üçgen Prizma Eşkenar üçgen prizmanın tabanları eşkenar üçgendir. Yan yüzeyleri ise üç tane eş dikdörtgenden oluşur.Tabanı eşkenar üçgen olduğundan

Tabanı eşkenar üçgen olduğundan Taban alanı Hacim Taban çevresi 3a olduğundan, yanal alan 3a.h dır. Buradan tüm alanı Tüm alan

b. Dik Üçgen Prizma Dik üçgen prizmanın tabanı dik üçgendir. Yan yüzeyleri ise üç tane dikdörtgenden oluşur.

Tabanı dik üçgen olduğundan Taban alanı = Hacim Taban çevresi a + b + c olduğundan, Yanal alan = (a + b + c) . h Tüm Alan = b . c + (a + b + c) . h


5. Silindir 

Tabanı daire olan prizmalara silindir denir. Silindirin yan yüzü dikdörtgen biçimindedir. Dikdörtgenin bir kenarı yükseklik kadar, diğer kenarı ise taban dairesinin çevresi kadardır.

Taban alanı= pr2 Hacim= pr2hTaban çevresi 2pr olduğundan yanal alan 2prh olur. Tüm alan = 2prh+ 2prBir dikdörtgen levha bir kenarı etrafında döndürüldüğünde silindir elde edilir.

6. Düzgün Çokgen Prizmalar 

Tabanı düzgün çokgenlerden oluşan prizmalara düzgün çokgen prizmalar deriz. Taban ayrıtları birbirine eşittir. Diğer dik prizmalarda olduğu gibi düzgün çokgen prizmalarda da yanal ayrıt aynı zamanda yüksekliktir.

  • Dik prizmalarda taban şekli ne olursa olsun, hacmin taban alanı ile yüksekliğin çarpımı ve yanal alanın ise taban çevresi ile yüksekliğin çarpımı olduğunu unutmayalım.

EĞİK PRİZMALAR 


1. Eğik Kare Prizma

Tabanı, bir kenarı a olan kareden oluşan prizma bir yöne doğru taban düzlemi ile a açısı yapacak kadar eğilirse eğik kare prizma elde edilir. Prizmanın yanal ayrıtlarına l dersek, Prizmanın yüksekliği h =l .sin a olur. Eğik prizmanın yanal ayrıtlarına dik olacak şekilde oluşan kesitine dik kesit denir. Eğik kare prizmanın iki yan yüzeyi dikdörtgen, diğer iki yan yüzeyi ise paralelkenardır. Eğik kare prizmanın dik kesitinin bir kenarı taban kenarı a kadar, diğeri ise, a’=a.sin a kadardır. Buradan;

Dik Kesit Alanı = Taban Alanı x Sin a Dik kesit çevresi = 2a +2a.sin aEğik prizmaların yanal alanlarının toplamı Yanal alan= Dik kesit çevresi x Yanal Ayrıtbağıntısı ile bulunur. Alt ve üst tabanlar ilave edildiğinde tüm alan bulunmuş olur. Bütün prizmalarda olduğu gibi eğik prizmalarda da hacim, taban alanı ile yüksekliğin çarpımı ile bulunur.

 Hacim = Taban Alanı x YükseklikAyrıca dik kesit alanı ile yanal ayrıtın çarpımı ile de hacim bulunabilir.

Hacim = Dik Kesit Alanı x Yanal Ayrıt 

2. Eğik Silindir 

|AA’| = |BB’| = l Yanal ayrıtı l olan ve taban düzlemi ile a açısı yapan eğik silindirde yükseklik, h=l.sin a

Dik Kesit Alanı=Taban Alanı x Sin a

Eğik silindirin yan yüz alanı, dik kesit çevresi ile yanal ayrıtının çarpımıdır. Bütün eğik prizmalarda olduğu gibi eğik silindir de de hacim, dik kesit alanı ile yanal ayrıtın çarpımına eşittir. Hacim = Taban Alanı x Yükseklik Hacim = Dik Kesit Alanı x Yanal Ayrıt Yanal Alan = Dik Kesit Çevresi x Yanal Ayrıt 


 
matematikcimm.tr.gg
Atasözleri sözlüğü
Deyimler sözlüğü
Kompozisyon Örnekleri
Kitap özetleri
Bilgi damlaları
Roman özetleri
100 Temel eser
Türk destanları
Dünyamızı tanıyalım
Ülkemizi tanıyalım
Türkiyenin bölgeleri
Dünya bilimi
Bilim adamları
Biliyormusun ?
Rekorlar kitabı
Bilmeceler
Güzel sözler
Fıkralar
Komik yazılar
Diğer Konular
Hoşgeldin 2011
İslami bilgiler
Photoshop dersleri
Küresel ısınma
Çeşitli bilgiler
Online:
Tekil Hit: 19
Çoğul Hit: 48
Ip: 34.239.153.44

PageRank
© Matematikcimm.tr.gg Tüm hakları saklıdır.İçerik kaynak gösterilmesi halinde kullanılabilir 2008-2009-2010 Copyright ©
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol