altın oran
ALTIN ORAN VE FİBONACCİ SAYILARI
Orta çağın en büyük matematikçilerinden biri olarak kabul edilen Fibonacci İtalya'nın ünlü Pisa şehrinde kesin olarak bilinmemekle birlikte 1170 yılında doğmuştur. Çocukluğu babasının çalıştığı Cezayir'de geçmiştir. İlk matematik eğitimini Müslüman bilim adamlarından almış ve İslam uygarlığının kitaplarını incelemiş ve üzerlerinde çalışmıştır.
1201 yılında "Liber Abacci" (cebir kitabı) adında bir matematik kitabı yazmıştır. Arap rakamlarını ve bugün kullandığımız sayı sistemini Avrupa'ya tanıtmıştır. Bu kitapta, ilkokulda öğrendiğimiz temel matematik (toplama, çarpma, çıkartma ve bölme) kurallarını birçok örnek vererek anlatmıştır. Dönemi için Avrupa’da bilinmemekle birlikte bu kadim bilgilerin matematikte bir sıçrayış için başlatıcı etkiyi yapmış olduğunu ileri sürmek yanlış olmaz. Avrupa unutulan bilgileri Fibonacci sayesinde yeniden hatırlamıştır…
Fibonacci Sayıları: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,...
Fibonacci dizisinde bir sayıyı kendinden önceki sayıya böldüğünüzde birbirine belirgin şekilde yakın sayılar çıkar. Serideki 13. sırada yer alan sayıdan (233) itibaren bu sayı sabitlenir.
ALTIN ORAN = 1,618
233 / 144 = 1,618
377 / 233 = 1,618
610 / 377 = 1,618
987 / 610 = 1,618
Altın Oran (golden ratio, the golden ve divine proportion olarak da bilinen golden section), Fibonacci sayılarına ait bir özelliktir. Sanatta, doğa da hatta yaşayan organizmalar da bile görünen bu ilgi çekici oran çoğu kişi tarafından yüce bir Yaratıcı'nın varlığının ispatı olarak görülür. Yaratıcının varlığının ispat edilmesinin gerekip gerekmediği tartışmasını konu dışı olması nedeniyle bir yana bırakıyorum.
Fibonacci diziliminin genel olarak anlamı: ''Dizideki bir sayıyı kendinden önceki sayıya böldüğünüzde birbirine çok yakın sayılar elde edersiniz. Hatta serideki 13. sırada yer alan sayıdan (233) sonra bu sayı sabitlenir. İşte bu sayı 'altın oran' olarak adlandırılır''
Bildiğimiz “p” Pi sayısı gibi belli bir sıradan sonra yani 13. sıradan sonra sabitleşen Altın oran 1.61803398874989...’a eşittir. Yunan alfabesinden gelen “F” PHi ile sembolize edilir.
Dünyanın, insanların, bitkilerin, ağaçların... , kısacası Kainat'ın yaratılışında yaratıcının kullandığı orandır.
Aynı zamanda insanlar da teknolojide ve hayatta bu oranı kullanmaktadırlar. Kısaca biz altın orana "göz nizamının oranı" diyebiliriz.
Çoğu zaman doğayı gözlediğimizde bu oranın varlığını görebiliriz.
Altın Oran'ın Görüldüğü ve Kullanıldığı Yerler :
1) Ayçiçeği: Ayçiçeği'nin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru tane sayılarının birbrine oranı altın oranı verir.
2) Papatya Çiçeği: Papatya Çiçeğinde de ayçiçeğinde olduğu gibi bir altın oran mevcuttur.
3) İnsan Kafası: Bildiğiniz gibi her insanın kafasında bir ya da birden fazla saçların çıktığı düğüm noktası denilen bir nokta vardır. İşte bu noktadan çıkan saçlar doğrusal yani dik değil, bir spiral, bir eğri yaparak çıkmaktadır. İşte bu spiralin ya da eğrinin tanjantı yani eğrilik açısı bize altın oranı verecektir.
4) İnsan Vücudu: İnsan Vücudunda Altın Oran'ın nerelerde görüldüğüne bakalım:
a) Kollar: İnsan vücudunun bir parçası olan kolları dirsek iki bölüme ayırır(Büyük(üst) bölüm ve küçük(alt) bölüm olarak). Kolumuzun üst bölü- münün alt bölüme oranı altın oranı verceği gibi, kolumuzun tamamının üst bölüme oranı yine altın oranı verir.
b) Parmaklar: Ellerimizdeki parmaklarla altın oranın ne alakası var diyebilirsiniz. İşte size alaka... Parmaklarınızın üst boğumunun alt boğuma oranı altın oranı vereceği gibi, parmağınızın tamamının üst boğuma oranı yine altın oranı verir.
5) Tavşan: İnsan kafasında olduğu gibi tavşanda da aynı özellik vardır.
6) Mısır Piramitleri: İşte size Altın Oran'ın en eski örneklerinden biri... Şimdi ne alaka Altın Oran ve Milattan Önce yapılan Mısır Piramitleri? Alaka şu; Her bir piramitin tabanının yüksekliğine oranı evet yine altın oranı veriyor.
7) Leonardo da Vinci: Bilindiği gibi Leonardo da Vinci Rönesans devri ünlü ressamlarındandır. Şimdi bu ünlü ressamın çizmiş oolduğu tabloları inceleyelim.
a) Mona Lisa: Bu tablonun boyunun enine oranı altın oranı verir.
b) Aziz Jerome: Yine tablonun boyunun enine oranı bize altın oranı verir.
8) Picasso: Picasso da Leonardo da Vinci gibi ünlü bir ressamdır. Ve resimlerinde bu oranı kullanmıştır.
9) Çam Kozalağı: Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu eğrinin eğrilik açısı altın orandır.
10) Deniz Kabuğu: Denize çoğumuz gitmişizdir. Deniz kabuklarına dikkat edenimiz, belki de kolleksiyon yapanımız vardır. İşte deniz kabuğunun yapısı incelendiğinde bir eğrilik tespit edilmiş ve bu eğriliğin tanjantının altın oran olduğu görülmüştür.
11) Tütün Bitkisi: Tütün Bitkisinin yapraklarının dizilişinde bir eğrilik söz konusudur. Bu eğriliğin tanjantı altın orandır.
12) Eğrelti Otu: Tütün Bitkisindeki aynı özellik Eğrelti Otu'nda da vardır.
13) Elektrik Devresi: Ya demek ki Altın Oran sadece Matematik ve kainatta değil, Fizik'te de kullanılıyormuş. Nasıl mı? Şöyle... Verilen n tane dirençten maximum verim elde etmek için bir paralel bağlama yapılması gerekir. Bu durumda Eşdeğer Direnç, yani Reş= yani altın oran olur.
14) Salyangoz: Salyangozun Kabuğu bir düzleme aktarılırsa, bu düzlem bir dikdörtgen oluşturur (-ki biz bu dikdörtgene altın dikdörtgen diyoruz.-) İşte bu dikdörtgenin boyunun enine oranı yine altın oranı verir.
15) OTOMOTİV SANAYİ: İlk önce ben size bir soru yönelteyim. Estetik bakımından bir Murat
16) MİMAR SİNAN: Mimar Sinan'ın da bir çok eserinde bu altın oran görülmektedir. Mesela Süleymaniye ve Selimiye Camileri'nin minarelerinde bu oran görülmektedir.
Görüldüğü üzere bir çok yerde bu ALTIN ORAN vardır.
İNSAN VÜCUDUNDA ALTIN ORAN
İnsan gözünün ALTIN ORAN a bu kadar yakın olmasının, estetik açıdan sürekli olarak ALTIN ORAN a uygun şekil ve yapıları tercih etmesinin bir nedenini, yaşadığı çevre olan doğada hemen her an ALTIN ORAN la karşı karşıya olmasının yanı sıra, kendi vücudunun hemen her noktasında ALTIN ORAN a sahip olmasında arayabiliriz. Aşağıda oranlarda insanında ne kadar ALTIN ORAN örneği olduğunu göreceksiniz:
Boy/ (bölü)Bacak boyu
Beden boyu/kol altı beden boyu
Tam kol boyu(Boyun-Parmak ucu)/Dirsek - Boğaz
Parmak ucu - omuz/Parmak ucu - Dirsek
Göbek - Omuz/Göbek - Bel
İNSAN YÜZÜNDE ALTIN ORAN
İdeal ölçülere sahip bir insan yüzünde de sayısız ALTIN ORAN örnekleri görmek mümkündür:
Yüz yüksekliği/Yüz genişliği
Tepe - Göz yüksekliği/Saç Dibi - Göz Yüksekliği
Göz - çene arası/Burun - çene arası
Alın genişliği/Burun boynu
Göz - Ağız/Burun boyu
Burun altı - çene/Ağız - Çene
Yüz genişliği/Gözbebekleri arası
Gözbebekleri arası/Ağız genişliği
Ağız genişliği/Burun Genişliği
Görüldüğü gibi ALTIN ORAN doğanın güzellik ölçüsü durumundadır. Bu yazıyı okuduktan sonra elinize cetveli alıp eninizi boyunuzu ölçmeye kalkmayın.