//-->
SORUNUZU SORUN HEP BİRLİKTE CEVAPLAYALIM BÖLÜMÜ SOLDA FORUM YAZAN YERDEDİR. FORUMA ÜYE OLUN TÜM SORULARINIZ CEVAPLANSIN. MATEMATİK VE DİĞER DERSLERİN VİDEOLU KONU ANLATIMI VE SORU ÇÖZÜMÜ VİDEO ANLATIMLARI SİTEMİZDE BULUNMAKTADIR MATEMATİKCİMM SONUNDAKİ CİMM 2 M İLE YAZILIYOR :) *HOŞ GELDİNİZ*
aaaa
aaaaaa
6. 7. 8. Sınıf Matematik
6. 7. 8. Sınıf Videolu konu anlatımı
6. 7. 8. Sınıf Videolu soru çözümü
6. 7. 8. Sınıf Türkçe
6. 7. 8. Sınıf Fen bilgisi
6. 7. 8. Sınıf Sosyal bilgiler
aaaaaa
Matematik
Geometri
Fizik
Kimya
Biyoloji
Edebiyat
Dil ve anlatım
6. 7. 8. Sınıf Matematik
Matematik
Geometri
Fizik
Kimya
Biyoloji
Türkçe
Edebiyat
Tarih
6. 7. 8. Sınıf Matematik
Geometri
Matematik
Toplist
Site içi arama
Ziyaretçi defteri
Site duyuruları
Yönetici Hakkında
Hakkımızda
iletişim
Reklam ver
Site Haritası
aaaaaaaa
Takvim yaprakları
Döküman arşivi

Eğitim Haberleri
Anketler
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce
Filipinli Bakıcı
Filipinli Bakıcılar
Filipinli Bakıcı Arıyorum
5 günde ingilizce
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce

Tüm dersler ve Matematik

polinomlar

 

POLİNOMLAR NEDİR?POLİNOM ÇEŞİTLERİ NELERDİR?

Polinomlarla İlgili Temel Kavramlar:

 N olmak üzere, P(x) = an xn + an-1 xn-1 +Î R ve n Îa0, a1, a2, ….an-1, an  …. + a1 x + a0 şeklindeki ifadelere x değişkenine bağlı, reel katsayılı n’inci dereceden bir polinom denir.

1. an xn, an-1 xn-1, …., ak xk, ….., ayx, a0 ifadelerinin her birine P(x) polinomunun terimleri denir.
2. an, an-1, …., ak, …., ay, a0 reel sayılarına, polinomun terimlerinin katsayıları denir.
3. P(x) polinomunda anxn terimindeki en büyük n sayısına polinomun derecesi denir ve [P(x)]=n şeklinde gösterilir.
4. Derecesi en büyük olan anxn terimindeki an reel sayısına polinomun katsayısı, a0 sabitine ise polinomun sabit terimi denir.
5. P(x) polinomu, terimlerin azalan derecelerine göre,
P(x) = anxn + an-1xn-1 + …. + a1x + a0 şeklinde veya P(x) polinomu terimlerin artan derecelerine göre,
P(x) = a0 + a1x + a2×2 + …. + an-1xn-1 + anxn biçiminde sıralanır.
6. Katsayıları reel sayılardan oluşan polinoma “Reel Katsayılı Polinom” denir ve reel katsayılı polinomlar kümesi R
ile gösterilir.

Örnek:
 N
ÎP(x) = 2×5-3/n +xn-2 + 4 ifadesinin bir polinom olması için n  kaç olmalıdır?

Çözüm:
5-3/n ifadesinin bir doğal sayı olması gerekir bunun için n yerine verilecek sayının 3’ün bölenleri olmalıdır.
3’ün bölenleri ise n = 1, n = 3,  2 olması gerekir. O halde bu iki şartı da
³ 0 den n ³
n = -1, n = -3 Ayrıca n-2  gerçekleyen n = 3 sayısıdır. Buna göre, P(x) polinomu
P(x) = 2×5-3/3 + x3-2 + 4
P(x) = 2×4 + x + 4 dür.

ÇOK DEĞİŞKENLİ POLİNOM

P(x, y) = x3y2 – 2×4 y3 + xy + x – y + 1 şeklindeki polinomlara x ve y değişkenlerine bağlı reel katsayılı bir polinom denir.
Bu polinomların derecesi x ve y’nin dereceler toplamının en büyüğüdür.
der P(x, y) = der P(x) + der P(y) dir.
Yukarıdaki iki değişkenli polinomun derecesi ikinci terimdeki x ve y’nin dereceler toplamıdır.
Der P(x, y) = 4 + 3 = 7 dir.

Örnek
P(x, y) = 2×2y4 – 3×3y5 + x2y3-y5 + 1 polinomunun derecesi kaçtır?

Çözüm:
2×2y4 teriminin derecesi 2 + 4 = 6
-3×3y5 teriminin derecesi 3 + 5 =8
x2y3 teriminin derecesi 2 + 3 = 5
-y5 teriminin derecesi 5
Yukarıda belirtilen en büyük dereceli terimin derecesi P(x, y) polinomunun derecesidir. O halde, der P(x, y) = 8 dir.

Örnek
P(x) = x3 – 3×2 + 4x – 2 ise
P(2)= ?, P(0) = ?, P(1) = ?

Çözüm:
P(2) = 23 – 3.22 + 4.2 – 2
= 8 – 12 + 8 – 2 = 2 bulunur.
P(0) = 03 – 3.02 + 4.0 – 2 = - 2 bulunur.
P(1) = 13 – 3.12 + 4.1 – 2
= 1 – 3 + 4 – 2 = 0 bulunur.

SIFIR POLİNOMU

P(X) = anxn + an-1xn-1 + … + a2×2 + a1x + a0 polinomunda,
an = an-1 = … = a1 = a0 = 0 ise; P(x) = 0xn + 0xn-1 + … + 0×2 + 0x + 0 polinomuna, sıfır polinomu denir.

Sıfır polinomu, 0 ile gösterilir. Sıfır polinomunun derecesi belirsizdir.

Örnek
P(x) = (m + 3)x2 + (n – 5) x + 1 polinomunun sıfır polinomu olması için; m, n ve t reel sayılarını belirtelim.

Çözüm
P(x) polinomunun sıfır polinomu olması için;
m + 3 = 0, n – 5 = 0, t = 0 ;
m = -3, n = 5, t = 0 olmalıdır.

SABİT POLİNOM

P(x) = anxn + an-1xn-1 + … + a1x + a0 polinomunda, an = an-1 = … = a1 = 0 ve  0 ise; P(x) polinomuna, sabit polinom denir.¹a0

0xn + 0xn-1 + … + 0x + a0 sabit polinomu, a0 ile gösterilir.
x0 = 1 olduğundan; a0 sabit polinomu, a0×0 biçiminde yazılabilir. Buna göre, sabit polinomun derecesi 0 dır.

Örnek P(x) = (a – 4)x2 + bx + 7 polinomunun sabit polinom olması için, a ve b sayılarını belirtelim.

Çözüm
P(x) = A – 4)x2 + bx + 7 polinomunun sabit polinom olması için, a – 4 = 0 ve b = 0 olmalıdır. Buna göre, a = 4 ve b = 0 dır.

İKİ POLİNOM EŞİTLİĞİ

Dereceleri aynı ve aynı dereceli terimlerinin kat sayıları eşit olan iki polinoma, eşit polinomlar denir.

n. dereceden,
A(x) = anxn + an-1xn-1 + … + a2×2 + a1x + a0 ve
B(x) = bnxn + bn-1xn-1 + … + b2×2 + b1x + b0 polinomları için;
 an =
ÛA(x) = B(x)  bn, an-1 = bn-1, … , a2 = b2, a1, a0 = b0 dır.

Örnek
A(x) = 5×3 + (a + 1×2 + d,
B(x) = (b - 1)x3 – 3×2 – (2c – 3) x + polinomları veriliyor. A(x) = B(x) olması için; a, b, c ve d yi bulalım.

Çözüm
A(x) = 5×3 + (a + 1)x2 + d = 5×3 + (a + 1)x2 + 0x + d,
B(x) = (b – 1)x3 - 3×2 – (2c – 3)x + olduğundan;
 5 = b – 1, a + 1 = -3, 0
Þ
A(x) = B(x)  = -(2c – 3), d =
b = 6, a = -4, c = , d = dir.

POLİNOM FONKSİYONLARI
 R
®
P : R
 P(x) = anxn + an-1xn-1 + … + a1x +
®x  a0 fonksiyonuna polinom fonksiyonu denir.

 R®P : R
 P(x) = 5×3 + 2×2 – 3x + 1 ifadesi polinom fonksiyonudur.
®x

Örnek
P(x) = x2 + 2x + 1 polinomu için P(X-1) polinomunu bulunuz.

Çözüm
P(x-1)’i bulmak için P(x)’de x yerine x-1’i yazalım.
P(x-1) = (x-1)2 + 2(x-1) + 1
= x2 – 2x + 1 + 2x – 2 + 1 = x2
P(x-1) = x2 olarak bulunur.

II: Yol:
Önce P(x) = x2 + 2x + 1 = (x+1)2 olarak yazıp x yerine x-1’i yazalım.
P(x-1) = (x-1+1)2 = x2 bulunur.

Örnek
P(x) polinomu için,
P(x+2) = x3 – 2×2 + 4 eşitliği veriliyor. Buna göre P(x) polinomunu bulunuz.

Çözüm
P(x+2) = x3 - 2×2 + 4 eşitliğinde
 h –2 = x’i yerine
Þ
H = x + 2  yazalım.
P(h – 2 + 2) = (h – 2)3 – 2(h – 2)2 + 4
P(h) = (h – 2)3 – 2(h – 2)2 + 4
P(x) = (x – 2)3 – 2(x – 2)2 + 4 bulunur.

POLİNOM KATSAYILAR TOPLAMI

P(x) = anxn + an-1xn-1 + … + a1x + a0 polinomunda x = 1 yerine yazılırsa
P(1) = an + an-1 + … + a1 + a0 katsayılar toplamı bulunur.
P(x) polinomunda x = 0 yerine yazılırsa sabit terimi bulunur.

Örnek
P(x) = 2×4 + 5×3 – 3×2 + x – 1 polinomunun katsayıları toplamını bulunuz.

Çözüm
P(x) de x = 1 ‘i yerine yazalım.
P(1) = 2.14 + 5.13 – 3.12 + 1-1
= 2 + 5 – 3 + 1 – 1 = 4 bulunur.

POLINOMLARDA İŞLEMLER

Polinomlarda Toplama İşlemi

A(x) = a4×4 + a3×3 + a2×2 + a1x + a0
B(x) = b3×3 + b2×2 + b1x + b0
Polinomları verilsin, bu iki polinomu toplarken aynı dereceli terimler kendi arasında toplanarak iki polinomun toplamı elde edilir.
A(x) + B(x) = a4 x4 + ( a3 + b3 ) x3 + ( a2 + b2 ) x2 + ( a1 + b1 ) x + a0 + b0

Örnek
3 x + 4 polinomlarının
ÖP(x) = x3 + 2×2 – 3x + 1, Q(x) = 3×2 +  toplamı olan polinomu bulunuz.

Çözüm
3-3)
Ö3) x + 1 + = x3 + 5×2 + (ÖP(x) + Q(x) = x3 + (2+3) x2 + (-3) +  x + 5 dir.

Buna göre iki polinomun toplamı yine bir başka polinom olduğundan polinomlar toplama işlemine göre kapalıdır.

1. Polinomlar kümesi, toplama işlemine göre kapalıdır.
2. Polinomlar kümesinde toplama işleminin değişme özelliği vardır.
3. Polinomlar kümesinde toplama işleminin birleşme özelliği vardır.
4. Sıfır polinomu, polinomlar kümesinde toplama işlemine göre birim elemanıdır.
5. Her polinomun, toplama işlemine göre tersi vardır.

İki Polinomun Farkı

P(x) ve Q(x) polinomları için, P(x) – Q(x) = P(x) + (-Q(x)) tir.
P(x) – Q(x) polinomuna, P(x) polinomu ile Q(x) polinomunun farkı denir.

Örnek
A(x) = 5×4 + x3 – 3×2 + x + 2 ve

B(x) = - 5×4 + x3 + 2×2 + polinomları için, A(x) – B(x) farkını bulalım.

Çözüm
B(x) = -5×4 + x3 + 2×2 + ise, -B(x) = 5×4 - x3 – 2×2 - dir.
A(x) – B(x) = A(x) + (-B(x))
= (5×4 + x3 – 3×2 + x + 2) + (5×4 - x3 –2×2 - )
= (5 + 5)x4 + ( - )x3 + (-3 –2)x2 + x + (2 - )
= 10×4 – x3 – 5×2 + x - olur.
Bu örnekte görüldüğü gibi, iki polinomun farkı da bir polinomdur.
Her A(x) ve B(x) polinomları için, A(x) – B(x) ifadesi de polinom olduğundan; polinomlar kümesi, çıkarma işlemine göre kapalıdır.

Polinomlarda Çarpma İşlemi

A(x) ve b(x) gibi iki polinomun çarpımı, A(x) ‘in her terimi B(x)’in her terimi ile ayrı ayrı çarpılarak bulunur.
anxn ile bkxk teriminin çarpımı
anxn . bkxk = (an . bk) xn+k dir.
Yani (5×3) . (-2×4) = 5 . (-2) x3+4 = -10×7
Bu çarpmaya göre aşağıdaki eşitliği yazabiliriz.
Der [A(x) . B(x) ] = der (A(x)) + der (B(x))

Örnek
A(x) = 3×4 + 1, B(x) = x2 + x
C(x) = x2 – x + 1 polinomları veriliyor.
a) A(x) . B(x)
b) B(x) . C(x) çarpımlarını bulunuz.

Çözüm
a) A(x) . B(x) = (3×4 + 1) . (x2 + x)
= 3×4 . x2 + 3×4 . x + x2 + x
= 3×6 + 3×5 + x2 + x

b) B(x) . C(x) = (x2 + x) . (x2 – x + 1)
= x2 . x2 – x2 . x + x2 . 1 + x . x2 – x . x + x . 1
= x4 – x3 + x2 + x3 – x2 + x + 1
= x4 + x + 1 bulunur.









matematikcimm.tr.gg
Atasözleri sözlüğü
Deyimler sözlüğü
Kompozisyon Örnekleri
Kitap özetleri
Bilgi damlaları
Roman özetleri
100 Temel eser
Türk destanları
Dünyamızı tanıyalım
Ülkemizi tanıyalım
Türkiyenin bölgeleri
Dünya bilimi
Bilim adamları
Biliyormusun ?
Rekorlar kitabı
Bilmeceler
Güzel sözler
Fıkralar
Komik yazılar
Diğer Konular
Hoşgeldin 2011
İslami bilgiler
Photoshop dersleri
Küresel ısınma
Çeşitli bilgiler
Online:
Tekil Hit: 18
Çoğul Hit: 266
Ip: 34.230.66.177

PageRank
© Matematikcimm.tr.gg Tüm hakları saklıdır.İçerik kaynak gösterilmesi halinde kullanılabilir 2008-2009-2010 Copyright ©
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol