//-->
SORUNUZU SORUN HEP BİRLİKTE CEVAPLAYALIM BÖLÜMÜ SOLDA FORUM YAZAN YERDEDİR. FORUMA ÜYE OLUN TÜM SORULARINIZ CEVAPLANSIN. MATEMATİK VE DİĞER DERSLERİN VİDEOLU KONU ANLATIMI VE SORU ÇÖZÜMÜ VİDEO ANLATIMLARI SİTEMİZDE BULUNMAKTADIR MATEMATİKCİMM SONUNDAKİ CİMM 2 M İLE YAZILIYOR :) *HOŞ GELDİNİZ*
aaaa
aaaaaa
6. 7. 8. Sınıf Matematik
6. 7. 8. Sınıf Videolu konu anlatımı
6. 7. 8. Sınıf Videolu soru çözümü
6. 7. 8. Sınıf Türkçe
6. 7. 8. Sınıf Fen bilgisi
6. 7. 8. Sınıf Sosyal bilgiler
aaaaaa
Matematik
Geometri
Fizik
Kimya
Biyoloji
Edebiyat
Dil ve anlatım
6. 7. 8. Sınıf Matematik
Matematik
Geometri
Fizik
Kimya
Biyoloji
Türkçe
Edebiyat
Tarih
6. 7. 8. Sınıf Matematik
Geometri
Matematik
Toplist
Site içi arama
Ziyaretçi defteri
Site duyuruları
Yönetici Hakkında
Hakkımızda
iletişim
Reklam ver
Site Haritası
aaaaaaaa
Takvim yaprakları
Döküman arşivi

Eğitim Haberleri
Anketler
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce
Filipinli Bakıcı
Filipinli Bakıcılar
Filipinli Bakıcı Arıyorum
5 günde ingilizce
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce

Tüm dersler ve Matematik

Piramit Küre ve Koni

  • PİRAMİTLER

Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir.

T noktası piramidin tepe noktasıdır. Kapalı bölge ise piramidin tabanıdır. Piramit; tabanı oluşturan şeklin ismiyle adlandırılır. Taban kare ise, kare piramit; taban altıgense altıgen piramit gibi.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

T noktasının taban düzlemi üzerindeki dik izdüşümüne H dersek [TH] piramidin yüksekliği olur.

|TH| = h biçiminde yazılır. [TA], [TB], [TC]… piramidin yanal ayrıtlarıdır.

Piramitlerin hacmi taban alanı ile yüksekliğin çarpımının üçte biri kadardır.

 

1.Kare Piramit

Kare piramidin tabanı kare biçimindedir. Yan yüzeyleri ise dört adet ikizkenar üçgenden oluşur.

İkizkenar üçgenlerin taban uzunlukları piramidin tabanının bir kenarına eşittir.

|PH| = h piramidin yüksekliğidir.

Yan yüz yüksekliği |PK| dır.

Tabanının bir kenarına a dersek

Buradan yan yüz yüksekliği

|PK|2 = h2 + ( )2 olur.

Tüm alan yan yüz alanları ile taban alanının toplamına eşittir.

 

2. Eşkenar Üçgen Piramit

Tabanı eşkenar üçgen olan piramitlere eşkenar üçgen piramit denir.

Taban Alanı olduğundan

3. Düzgün Dörtyüzlü

Dört yüzü de eşkenar üçgenlerden oluşan cisimdir. Yükseklik, tabanı oluşturan üçgenin ağırlık merkezine iner.

Bir ayrıtı a olan  düzgün dörtyüzlünün

 Yarı yüz yüksekliği ve
 Cisim yüksekliği  olur

Buradan

4. Düzgün Sekizyüzlü

Bütün ayrıtları birbirine eş ve yüzeyleri sekiz eşkenar

üçgenden oluşan cisme düzgün sekizyüzlü denir.

Bir ayrıtına a dersek yan yüz yüksekliği olur.

Cismin, ortak tabanlı iki adet kare piramitten oluştuğunu

düşünürsek piramitlerin yüksekliği;

olur.

Piramitin hacmi olduğundan;

Yüzey şekilleri eşkenar üçgen olduğundan

5. Düzgün Altıgen Piramit

Tabanı düzgün altıgen olan piramide düzgün altıgen piramit denir.

Yan yüzeyleri altı adet eş ikizkenar üçgenden oluşur.

KONİ

Tabanı daire biçiminde olan piramide koni adı verilir.

Taban alanı = olduğundan

bulunur.  Yan yüzeyleri altı adet eş ikizkenar üçgen oluşur.

KONİ

Tabanı daire biçiminde olan piramite koni adı verilir.

Burada;

Taban yarıçapı |OB| = r

Cisim yüksekliği |PO| = h olur.

|PA| = |PB| = l uzunluğuna ana doğru denir.

POB dik üçgeninde,

h2 + r2 = l2 bağıntısı vardır.

Koninin yanal alanı bir daire dilimidir.

Daire diliminin alanı, yay uzunluğu ile yarıçapın çarpımının yarısıdır. Yay uzunluğu taban çevresine eşit olduğundan,

Yanal alan= pr2+prl

Tüm alan bulunurken, taban alanı da ilave edilir.

Tüm alan = šr2 + šrl

  •  Daire diliminin merkez açısına a dersek
oranı elde ederiz.
  •  Yükseklikleri ve taban yarıçapları eşit olan iki cismin hacimleri de birbirine eşittir.

 

  •  Üçgensel şekiller bir kenarı etrafında döndürüldüğünde koni elde edilir.şekildeki ABC dik üçgeninin AB kenarı etrafında döndürülmesi ile |BC| yarıçaplı ve yüksekliği |AB| olan koni elde edilir.

Kesik piramitlerin hacimleri bulunurken cisim piramide tamamlanır.

[O1B] // [O2D] olduğundan

benzerliği vardır.

Küçük koninin büyük koniye benzerlik oranı dir. Alanları

oranı benzerlik oranının

karesi olduğundan, alanlar oranı olur. Hacimler oranı

ise benzerlik oranının küpüdür. r1 yarıçaplı küçük koninin hacmine V1, r2 yarıçaplı büyük koninin hacmine V2 dersek

 

KÜRE

Uzayda bir noktadan eşit uzaklıktaki noktaların geometrik yerine küre yüzeyi denir. Küre yüzeyinin sınırladığı cisme küre adı verilir. Sabit noktaya kürenin merkezi, merkezin küre yüzeyine uzaklığına da kürenin yarıçapı denir.

O merkezli R yarıçaplı kürede;

Yüzey alanı

1. Küre Dilimi

[KL] çap

m(AOB) = a

şekildeki gibi kesilip çıkarılan küre diliminin hacmi

2. Küre Kapağı

Bir küre merkezinden |OP| uzaklıkta bir düzlemle kesildiğinde kesit alanının daire şeklinde olduğu görülür.

Kesilip çıkarılan kısma küre kapağı denir. Kesitin merkezinden uzaklığına |OP|, kesitin yarıçapına r ve kürenin yarıçapına R dersek

|OP|2 + r2 = R2
eşitliği vardır. h = R - |OP|
Küre kapağının alanı= 2pRh

Yandaki şekildeki gibi olan

Küre parçasının haçmi
matematikcimm.tr.gg
Atasözleri sözlüğü
Deyimler sözlüğü
Kompozisyon Örnekleri
Kitap özetleri
Bilgi damlaları
Roman özetleri
100 Temel eser
Türk destanları
Dünyamızı tanıyalım
Ülkemizi tanıyalım
Türkiyenin bölgeleri
Dünya bilimi
Bilim adamları
Biliyormusun ?
Rekorlar kitabı
Bilmeceler
Güzel sözler
Fıkralar
Komik yazılar
Diğer Konular
Hoşgeldin 2011
İslami bilgiler
Photoshop dersleri
Küresel ısınma
Çeşitli bilgiler
Online:
Tekil Hit: 79
Çoğul Hit: 479
Ip: 3.234.210.89

PageRank
© Matematikcimm.tr.gg Tüm hakları saklıdır.İçerik kaynak gösterilmesi halinde kullanılabilir 2008-2009-2010 Copyright ©
=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=