//-->
SORUNUZU SORUN HEP BİRLİKTE CEVAPLAYALIM BÖLÜMÜ SOLDA FORUM YAZAN YERDEDİR. FORUMA ÜYE OLUN TÜM SORULARINIZ CEVAPLANSIN. MATEMATİK VE DİĞER DERSLERİN VİDEOLU KONU ANLATIMI VE SORU ÇÖZÜMÜ VİDEO ANLATIMLARI SİTEMİZDE BULUNMAKTADIR MATEMATİKCİMM SONUNDAKİ CİMM 2 M İLE YAZILIYOR :) *HOŞ GELDİNİZ*
aaaa
aaaaaa
6. 7. 8. Sınıf Matematik
6. 7. 8. Sınıf Videolu konu anlatımı
6. 7. 8. Sınıf Videolu soru çözümü
6. 7. 8. Sınıf Türkçe
6. 7. 8. Sınıf Fen bilgisi
6. 7. 8. Sınıf Sosyal bilgiler
aaaaaa
Matematik
Geometri
Fizik
Kimya
Biyoloji
Edebiyat
Dil ve anlatım
6. 7. 8. Sınıf Matematik
Matematik
Geometri
Fizik
Kimya
Biyoloji
Türkçe
Edebiyat
Tarih
6. 7. 8. Sınıf Matematik
Geometri
Matematik
Toplist
Site içi arama
Ziyaretçi defteri
Site duyuruları
Yönetici Hakkında
Hakkımızda
iletişim
Reklam ver
Site Haritası
aaaaaaaa
Takvim yaprakları
Döküman arşivi

Eğitim Haberleri
Anketler
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce
Filipinli Bakıcı
Filipinli Bakıcılar
Filipinli Bakıcı Arıyorum
5 günde ingilizce
7 günde ingilizce
7 günde ingilizce
7 günde ingilizce

Tüm dersler ve Matematik

Üçgenler.

  • ÜÇGEN

Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir.

AB] È[AC]È [BC] = ABC dir.  

Burada;

  A, B, C noktaları üçgenin

 köşeleri,

[AB], [AC], [BC] doğru parçaları üçgenin

 kenarlarıdır.

BAC, ABC ve ACB açıları üçgenin iç açılarıdır.  

|BC| = a, |AC| = b, |AB| = c

uzunluklarına üçgenin kenar uzunlukları denir. iç açıların bütünleri olan açılara dış açılar denir. 

 

ABC üçgeni bir düzlemi; üçgenin kendisi, iç bölge, dış bölge, olmak üzere üç  bölgeye ayırır. 

ABC È {ABC iç bölgesi} = (ABC) (üçgensel bölge)

  • ÜÇGEN ÇEŞiTLERi

1. Kenarlarına göre üçgen çeşitleri

a. Çeşitkenar üçgen 

Üç kenar uzunlukları da farklı olan üçgenlere denir.

 

b. ikizkenar Üçgen 

Herhangi iki kenar uzunluklarıeşit olan üçgenlere denir.

 

c. Eşkenar Üçgen 

Üç kenar uzunluklarıda eşit olan üçgenlere denir.

 

2. Açılarına göre üçgenler

a. Dar açılı üçgen 

Üç açısının ölçüsü de 90° den küçük olan üçgenlere dar açılıüçgen denir.

 

b. Dik açılı üçgen 

Bir açısının ölçüsü 90° ye eşit olan üçgenlere denir. 

Dik üçgen olarak adlandırılır.

c. Geniş açılı üçgen 

Bir açısının ölçüsü 90° den büyük olan üçgenlere denir.

Bir üçgende bir tek geniş açı olabilir.

 

  • ÜÇGENİN TEMEL ve YARDIMCI  ELEMANLARI

Üçgenin kenarları’ na ve açıları’ na temel elemanlar, Yükseklik, kenarortay ve açıortaylarına yardımcı elemanlar denir.

1. Yükseklik 

Bir köşeden karşı kenara veya karşı kenarın uzantısına çizilen dik doğru parçasına yükseklik denir.

ha   ®   a kanarına ait yükseklik.

hc   ®   c kenarına ait yükseklik

yüksekliklerin kesim noktasına üçgenin Diklik Merkezi denir.

 

2. Açıortay

Üçgenin bir köşesindeki açıyıiki eş parçaya ayıran ışına o köşenin açıortayıdenir.

nA  ®  A köşesine ait iç açıortay  

n'A ®   A köşesine ait dış açıortay

 

3. Kenarortay

Üçgenin bir kenarının orta noktasını karşısındaki köşe ile birleştiren doğru parçasına o kenara ait kenarortay denir.

|AD| = Va , |BE| = Vb  olarak ifade edilir.

 

Dik üçgende, hipotenüse ait kenarortay hipotenüsün yarısına eşittir.

|BC| = a (hipotenüs) 

 

ÜÇGENDE AÇI ÖZELLİKLERİ

1. Üçgende iç açıların ölçüleri toplamı180° dir.

[AD // [BC] olduğundan,

iç ters ve yöndeş olan açılar bulunur.

a + b + c = 180°

m(A) + m(B) + m(C) = 180°

Üçgenin iç açılarının toplamı180° dir.

İç açılara komşu ve bütünler olan açılara dış açı denir.

2. Üçgende dış açıların ölçüleri toplamı360° dir.

a' + b' + c' = 360°

m(DAF)+m(ABE)+m(BCF)=360°

 

3. Üçgende bir dış açının ölçüsü kendisine komşu olmayan iki iç açının ölçüleri toplamına eşittir.

[AB] // [CE olduğundan

 

m(ACD)=a+b

 

m(DAC) = m(A') = b + c

m(DBE) = m(B') = a + c

m(ECF) = m(C') = a + b

Yandaki şekilde a, b, c bulundukları açıların ölçüleri ise,

 

m(BDC) = a+b+c

 

4. iki kenarı eş olan üçgene ikizkenar üçgen denir.ABC üçgeninde:

 

lABl=lACl Û m(B)=m(C)

 

Burada A açısına ikizkenar üçgenin tepe açısı, [BC] kenarına ise tabanıdenir.

Tepe açısına m(BAC) = a dersek

Taban açıları

 

5. Üç kenarıeş olan üçgene eşkenar üçgen denir.

ABC üçgeninde

|AB| = |BC| = |AC|

m(A) = m(B) = m(C) = 60°

Eşkenar üçgen, ikizkenar üçgenin bütün özelliklerini taşır.

 

  • ÜÇGENDE AÇIORTAYLAR

1. Üçgende iç açıortaylar bir noktada kesişirler. Bu nokta üçgenin içteğet çemberinin merkezidir.

Açıortayların kesiştiği noktadan kenarlara çizilen dikmelerin uzunluklarıeşittir. (Çemberin yarıçapı)

2. Üçgende iki dış açıortay ile üçüncü iç açıortay bir noktada kesişirler. Bu nokta üçgenin dıştan teğet çemberlerinden birinin merkezidir. (Üç dış teğet çember vardır.)

[AD], [BD] ve [CD] açıortaylarından herhangi ikisi verildiğinde üçüncüsünün de kesinlikle açıortaydır.

3. iki iç açıortayın kesişmesiyle oluşan açı; ABC üçgeninde ve BDC üçgeninde iç açılar toplamı  yazılırsa

 

4. iki dış açıortayın kesişmesiyle oluşan açı; ABC üçgeninin dış açılar toplamıve BDC üçgeninin iç açılar toplamını yazarsak

 

5. Bir iç açıortay ile bir dış açıortayın kesişmesiyle oluşan açı,

ABC üçgeninin C açısının dış açıortayı ile B açısının iç açıortayı arasındaki açının ölçüsü A açısının ölçüsünün yarısıdır.

 

  • Burada D noktası dış teğet çemberlerden birinin merkezi olduğundan, A dan çizilen dış açıortayda D noktasından geçer.

6. Açıortayla yükseklik arasında kalan açı; ABC üçgeninde [AD] A açısına ait açıortay ve [AH] yüksekliktir.

Açıortayla yükseklik arasındaki açıya m(HAD) = x dersek

 Bir açı ve açıortayını başka bir doğrunun kestiği durumlarda dış açı özelliği kullanılarak bütün açılar bulunabilir.

 
matematikcimm.tr.gg
Atasözleri sözlüğü
Deyimler sözlüğü
Kompozisyon Örnekleri
Kitap özetleri
Bilgi damlaları
Roman özetleri
100 Temel eser
Türk destanları
Dünyamızı tanıyalım
Ülkemizi tanıyalım
Türkiyenin bölgeleri
Dünya bilimi
Bilim adamları
Biliyormusun ?
Rekorlar kitabı
Bilmeceler
Güzel sözler
Fıkralar
Komik yazılar
Diğer Konular
Hoşgeldin 2011
İslami bilgiler
Photoshop dersleri
Küresel ısınma
Çeşitli bilgiler
Online:
Tekil Hit: 80
Çoğul Hit: 167
Ip: 18.97.9.175

PageRank
© Matematikcimm.tr.gg Tüm hakları saklıdır.İçerik kaynak gösterilmesi halinde kullanılabilir 2008-2009-2010 Copyright ©
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol